SAMELSON PRODUCTS IN FUNCTION SPACES

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bott-Samelson Varieties and Configuration Spaces

The Bott-Samelson varieties Z are a powerful tool in the representation theory and geometry of a reductive group G. We give a new construction of Z as the closure of a B-orbit in a product of flag varieties (G/B). This also gives an embedding of the projective coordinate ring of the variety into the function ring of a Borel subgroup: C[Z] ⊂ C[B]. In the case of the general linear group G = GL(n...

متن کامل

compactifications and function spaces on weighted semigruops

chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...

15 صفحه اول

Products and Factors of Banach Function Spaces

Given two Banach function spaces we study the pointwise product space E · F , especially for the case that the pointwise product of their unit balls is again convex. We then give conditions on when the pointwise product E ·M(E,F ) = F , where M(E,F ) denotes the space of multiplication operators from E into F .

متن کامل

Whitehead Products in Function Spaces: Quillen Model Formulae

We study Whitehead products in the rational homotopy groups of a general component of a function space. For the component of any based map f : X → Y , in either the based or free function space, our main results express the Whitehead product directly in terms of the Quillen minimal model of f . These results follow from a purely algebraic development in the setting of chain complexes of derivat...

متن کامل

The Smolyak Algorithm and Tensor Products of Function Spaces

The Smolyak algorithm represents one possible approach to the approximation of functions of many variables. The natural domains of de nition are given by tensor products of function spaces de ned on R or on some interval I ⊂ R. Here Besov as well as Sobolev spaces of dominating mixed smoothness come into play. They are tensor products of Besov and Sobolev spaces de ned on R.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Korean Mathematical Society

سال: 2015

ISSN: 1015-8634

DOI: 10.4134/bkms.2015.52.4.1297